C7.5: General Relativity I
 Problem Sheet 1

Please submit solutions in the collection boxes in the basement of the Mathematical Institute no later than 15th October, 1pm.

1. Practice with tensors

Given a tensor $X^{a b}$ and a vector V^{a} with components

$$
X^{a b}=\left(\begin{array}{cccc}
2 & 0 & 1 & -1 \\
-1 & 0 & 3 & 2 \\
-1 & 1 & 0 & 0 \\
-2 & 1 & 1 & -2
\end{array}\right), \quad V^{a}=(-1,2,0,-2)
$$

find $X^{a}{ }_{b}, X_{a}{ }^{b}, X^{(a b)}, X_{[a b]}, X^{a}{ }_{a}, V^{a} V_{a}$, and $V_{a} X^{a b}$, using $\eta_{a b}=\operatorname{diag}(-1,1,1,1)$.

2. Summation convention

Explain why each equation below is ambiguous or inconsistent. Provide a possible correct version for each.

1. $x^{\prime a}=L^{a b} x^{b}$
2. $x^{\prime a}=L^{b}{ }_{c} M^{c}{ }_{d} x^{d}$
3. $\delta_{b}^{a}=\delta_{c}^{a} \delta_{d}^{c}$
4. $x^{\prime a}=L^{a}{ }_{c} x^{c}+M^{c}{ }_{d} x^{d}$
5. $x^{\prime a}=L^{a}{ }_{c} x^{c}+M^{a d} x^{d}$
6. $\phi=\left(X^{a} A_{a}\right)\left(Y^{a} B_{a}\right)$

3. Operations on tensors

Consider two general coordinate systems $\left\{x^{a}\right\}$ and $\left\{x^{\prime a}\right\}$ on overlapping regions of flat Minkowski spacetime. How do the components of a (p, q) tensor transform under the change of coordinates from $\left\{x^{a}\right\} \mapsto\left\{x^{\prime a}\right\}$?

What form does the Jacobian matrix $\partial x^{\prime a} / \partial x^{b}$ take for a Lorentz transformation between two inertial frames?

- Show that the sum $S^{a}{ }_{b}+T^{a}{ }_{b}$ of two $(1,1)$ tensors is also a $(1,1)$ tensor.
- Show that the tensor product $S^{a}{ }_{b} T^{c}$ of a $(1,1)$ tensor and an $(1,0)$ tensor is a $(2,1)$ tensor.
- Show that the contraction $S^{a c}{ }_{b c}$ of a $(2,2)$ tensor is a $(1,1)$ tensor.
- Show that the partial derivative $\partial_{a} S^{b}$ of a $(1,0)$ tensor transforms as a $(1,1)$ tensor under Lorentz transformations between inertial frames, but not under general coordinate transformations.

4. Levi-Civita tensor

For any tensor $T^{a_{1} \ldots a_{q}}$, we may define its symmetrisation

$$
T^{\left(a_{1} \ldots a_{q}\right)} \equiv \sum_{\sigma \in \mathcal{S}_{q}} T^{a_{\sigma(1)} \ldots a_{\sigma(q)}}
$$

and anti-symmetrisation

$$
T^{\left[a_{1} \ldots a_{q}\right]} \equiv \sum_{\sigma \in \mathcal{S}_{q}} \operatorname{sig}(\sigma) T^{a_{\sigma(1)} \ldots a_{\sigma(q)}}
$$

where \mathcal{S}_{q} is the group of permutations $\{\sigma\}$ of q elements and $\operatorname{sig}(\sigma)$ denotes the sign of a permutation σ.

Prove that a completely anti-symmetric $(0, m)$ tensor in n dimensions vanishes unless $m \leq n$. How many independent components does such a tensor have?

In a four-dimensional spacetime with metric $g_{a b}$, the Levi-Civita tensor $\epsilon_{a b c d}$ is defined by two properties:

1. It is completely anti-symmetric: $\epsilon_{a b c d}=\epsilon_{[a b c d]}$.
2. $\epsilon_{0123}=\sqrt{-g}$ in a right-handed coordinate system $\left\{x^{0}, x^{1}, x^{2}, x^{3}\right\}$, where g is the determinant of the metric.

Show that $\epsilon_{0123}=1$ in a right-handed inertial frame. Prove that $\epsilon_{a b c d}$ transforms as a $(0,4)$ tensor under general coordinate transformations

$$
x \rightarrow x^{\prime}(x)
$$

5. Maxwell's equations in an inertial frame

Show that if $F_{a b}=-F_{b a}$,

$$
\partial_{[a} F_{b c]}=0 \quad \Leftrightarrow \quad \partial_{a} F_{b c}+\partial_{b} F_{c a}+\partial_{c} F_{a b}=0
$$

The electromagnetic field is encoded in an anti-symmetric $(0,2)$ tensor field, $F_{a b}$. The electric and magnetic fields measured by an observer with 4 -velocity V^{a} are extracted from $F_{a b}$ by

$$
E_{a}=F_{a b} V^{b}, \quad B_{a}=-\frac{1}{2} \epsilon_{a b c d} F^{b c} V^{d}
$$

where $\epsilon_{a b c d}$ is the Levi-Civita tensor. By contracting with the 4 -velocity V^{a}, explain why E_{a} and B_{a} each have only 3 independent components. For an observer at rest in an inertial frame, so that $V^{a}=(1,0,0,0)$, show that

$$
\begin{array}{ll}
E_{a}=(0, \vec{E}) & \text { where } E_{i}=F_{i 0} \\
B_{a}=(0, \vec{B}) & \text { where } B_{i}=\frac{1}{2} \epsilon_{i j k} F^{j k}
\end{array}
$$

Hence show that

$$
\partial_{a} F^{a b}=-4 \pi J^{b}, \quad \partial_{[a} F_{b c]}=0
$$

reproduce Maxwell's equations for the electromagnetic fields (\vec{E}, \vec{B}). The vector field J^{a} has components (ρ, \vec{J}), where ρ is the electric charge density and \vec{J} is the electric current density measured by an observer at rest in the inertial frame. Show that $\partial_{a} J^{a}=0$ and explain the physical meaning of this equation.

The contribution to the energy-momentum tensor from the electromagnetic field is

$$
T^{a b}=\frac{1}{4 \pi}\left[F^{a c} F_{c}^{b}-\frac{1}{4}\left(F^{c d} F_{c d}\right) \eta^{a b}\right]
$$

Assuming $J^{a}=0$, show that this energy-momentum tensor is conserved, $\partial_{a} T^{a b}=0$. What happens when $J^{a} \neq 0$?

6. Geodesics and motion in an EM field

Consider a curve $x^{a}(\lambda)$ in flat Minkowski space parametrised by a real parameter $\lambda_{1} \leq \lambda \leq \lambda_{2}$. What is the condition for this curve to be time-like?

The proper time of a time-like curve is the time measured by an observer moving along it. In an inertial reference frame, this is given by the functional

$$
\Delta \tau=\int_{\lambda_{1}}^{\lambda_{2}} \mathrm{~d} \lambda \sqrt{-\eta_{a b} \frac{\mathrm{~d} x^{a}}{\mathrm{~d} \lambda} \frac{\mathrm{~d} x^{b}}{\mathrm{~d} \lambda}}
$$

where $\eta_{a b}=\operatorname{diag}(-1,1,1,1)$. Consider the variational problem for this functional and show that the curve of extremal proper time between two points $x^{a}\left(\lambda_{1}\right)$ and $x^{a}\left(\lambda_{2}\right)$ is a straight line. Is this a minimum or a maximum?

Show that one may always reparametrise the curve such that $\sqrt{-\eta_{a b} \dot{x}^{a} \dot{x}^{b}}$ is constant, where $\dot{x}^{a}=\mathrm{d} x^{a} / \mathrm{d} \lambda$. What is the parametrisation that achieves this? Such a parameter is called an affine parameter.

Why is extremising the functional

$$
S=-\frac{1}{2} \int_{\lambda_{1}}^{\lambda_{2}} \mathrm{~d} \lambda \eta_{a b} \frac{\mathrm{~d} x^{a}}{\mathrm{~d} \lambda} \frac{\mathrm{~d} x^{b}}{\mathrm{~d} \lambda}
$$

equivalent to extremising the proper time when using an affine parameter? What is left of the reparametrisation freedom $\lambda \rightarrow \lambda^{\prime}(\lambda)$ when working with this action, that is what are the relations between choices of affine parameters?

Now consider the modified functional

$$
S=-\int_{\lambda_{1}}^{\lambda_{2}} \mathrm{~d} \lambda\left[\frac{m}{2} \eta_{a b} \frac{\mathrm{~d} x^{a}}{\mathrm{~d} \lambda} \frac{\mathrm{~d} x^{b}}{\mathrm{~d} \lambda}-q A_{a} \frac{\mathrm{~d} x^{a}}{\mathrm{~d} \lambda}\right] .
$$

Show that the solution of the variational problem is

$$
\frac{\mathrm{d}^{2} x^{a}}{\mathrm{~d} \lambda^{2}}=\frac{q}{m} F^{a}{ }_{b} \frac{\mathrm{~d} x^{b}}{\mathrm{~d} \lambda} \quad \text { where } F_{a b}=\partial_{a} A_{b}-\partial_{b} A_{a} .
$$

This equation describes the motion of a particle of mass m and electric charge q in an electromagnetic field $F_{a b}$. Contract the equation of motion with \dot{x}^{a} and show that $\sqrt{-\eta_{a b} \dot{x}^{a} \dot{x}^{b}}$ remains constant in the presence of an electromagnetic field.

